Synthesis and Structural Characterisation of R_3AsX_2 Compounds (R = Me, Ph, *p*-FC₆H₄ or *p*-MeOC₆H₄; X₂ = Br₂, I₂ or IBr); Dependency of Structure on R, X and the Solvent of Preparation[†]

Neil Bricklebank,^a Stephen M. Godfrey,^{*,a} Helen P. Lane,^a Charles A. McAuliffe^{*,a} Robin G. Pritchard^a and José-Maria Moreno^b

^a Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK

^b Departmento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Spain

Compounds of stoichiometry R_3AsX_2 ($R = p - MeOC_6H_4$, Ph or Me; X = Br or I; $R = p - FC_6H_4$, X = I), R_{A} AsI₄ (R = p-FC₆H₄ or Ph) and Ph₃AsIBr have been synthesised in anhydrous diethyl ether and characterised by elemental analysis and Raman spectroscopy. Single-crystal X-ray diffraction studies of Ph₃AsBr₂ showed it to possess a molecular trigonal-bipyramidal structure, in contrast to Ph₃AsI, which adopts the molecular four-co-ordinate structure Ph₃As-I-I. Both Me₃AsI₂ and Me₃AsBr₂ have the molecular four-co-ordinate structure, Me₃As-X-X, thus illustrating that the structure of R₃AsX, compounds isolated from diethyl ether is dependent on R and X. The structure of Ph₃AsIBr also revealed four-co-ordinate molecular geometry in contrast to Ph₃AsBr₂. The compound Ph₃AsIBr showed no dual occupancy of the halogen sites, and the heavier halogen is bound directly to the arsenic. The X-ray powder diffraction patterns of Ph_3AsX_2 (X₂ = Br₂, I₂ or IBr) have been recorded and are compared. Solution studies on R_3AsI_2 (R = p-FC₆H₄, Ph or p-MeOC₆H₄) again showed the sensitivity of these molecules to the nature of R. For example, $(p-FC_6H_4)_3AsI_2$ was not formed in any solvent employed; instead, equimolar quantities of $(p-FC_6H_4)_3AsI_4$ and $(p-FC_6H_4)_3As$ were isolated; Ph₃Asl, was only formed in non-polar solvents upon dropwise addition of a light petroleum solution of l_2 to a saturated solution of Ph₃As in the same solvent. The compound (p-MeOC₆H₄)₃Asl₂ was the quantitative product from the direct reaction of the tertiary arsine with I, in diethyl ether. Its stability constant in CCl₄ is approximately 2.5 times greater than that calculated for Ph₃Asl₂.

Compounds of stoichiometry R_3AsX_2 ($X_2 = F_2$, Cl_2 , Br_2 or IBr) have not been the subject of extensive study, but have received sporadic attention over the past century. Several crystal structures are available including the trigonal-bipyramidal Ph₃AsF₂,¹ Me₃AsCl₂² and (Me₃CCH₂)₃AsBr₂.³ However, Me₃AsBr₂² was assigned an ionic structure from a preliminary X-ray study, despite a significant anion-cation interaction of 3.38 Å (the van der Waals radius of dibromine is 3.9 Å).⁴ Additionally, extensive conductimetric and spectroscopic studies on Ph_3AsX_2 (X = Cl or Br)⁵⁻¹² have supported regular trigonal-bipyramidal geometry and one study of Et₃AsBr₂¹³ concluded ionic tetrahedral geometry, [Et₃AsBr]Br, for the arsenic atom. More recently, X-ray crystallographic studies of Ph₃AsI₂ compounds isolated from diethyl ether revealed a novel four-co-ordinate molecular 'spoke' structure, $Ph_3As-I-I$.^{14,15} Clearly, the precise structural nature of R_3AsX_2 compounds is dependent not only on the halide ion but also the nature of the R groups.

The stability of Ph_3AsI_2 in various solvents has also been investigated by Klaboe and co-workers,¹⁶ who concluded that it was only formed in non-polar solvents such as hexane. In highly polar solvents such as MeCN no evidence for its formation was noted; instead, equimolar quantities of Ph_3AsI_4 and Ph_3As were formed. This observation was in agreement with the results of Beveridge and Harris¹² and those of Bhat and Rao^{17,18} who postulated a mechanism for the conversion of Ph_3AsI_2 into Ph_3AsI_4 and Ph_3As . The latter carried out spectroscopic and kinetic studies into the donor properties of

$$\begin{array}{c} Ph_{3}As + I_{2} \longrightarrow Ph_{3}AsI_{2} \longrightarrow [Ph_{3}AsI]I\\ outer & inner\\ [Ph_{3}AsI]I + I_{2} \longrightarrow [Ph_{3}AsI]I_{3}\\ & \mathbf{Scheme 1} \end{array}$$

Ph₃As towards I₂ in CH₂Cl₂ solution, and concluded that a 1:1 charge-transfer complex is formed. In the UV spectrum the intensity of this charge-transfer band at 320 nm decreased markedly with time, whilst a concurrent intensification of bands due to I_3^- was observed.¹⁷ These observations were described in terms of an 'outer' and 'inner' sphere complex (Scheme 1). The activation energy of the process decreased appreciably with increasing relative permittivity of the solvent.

We have recently reported the structural characterisation of a number of compounds of stoichiometry Ph_3EX_2 (E = P^{19-22} or Sb;²³ $X_2 = Br_2 I_2$ or IBr) synthesised in diethyl ether and have found that the phosphorus compounds adopt a novel four-co-ordinate molecular 'spoke' structure, Ph₃P-X-X, whereas the antimony compounds are all trigonal-bipyramidal Ph₃SbX₂. We therefore decided to investigate a series of compounds of stoichiometry R_3AsX_2 ($X_2 = Br_2$, I_2 or IBr) in the solid state. In particular we were interested in the structural study of Ph₃AsIBr for two reasons; first, no compound of this stoichiometry has previously been isolated in the solid state and, secondly, and more importantly, since Ph3AsI2 is a fourco-ordinate charge-transfer species and Ph3AsBr2 has been reported 6-12 to be trigonal bipyramidal, the structure of Ph₃AsIBr could be either of these two forms. We have also structurally characterised Me₃AsI₂, Ph₃AsBr₂, and reinvestigated Me₃AsBr₂ which was previously reported by Hursthouse and Steer² and said to be disordered. The high final residuals

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Table 1 A	Analytical and s	pectroscopi	c data for R	AsX	$_{2}$ and $R_{3}AsX_{4}$	compounds
-----------	------------------	-------------	--------------	-----	---------------------------	-----------

	Colour	Analysis (%) ^a				
Compound		C	Н	I	Br	$\tilde{v}(As-X)/cm^{-1}$
$(p-FC_6H_4)_3AsBr_2$	White	41.6 (41.5)	2.1 (2.3)		30.3 (30.8)	125
Ph ₃ AsBr ₂	White	46.2 (46.4)	3.2 (3.2)		34.4 (34.3)	151
$(p-MeOC_6H_4)_3AsBr_2$	White	45.0 (45.3)	3.7 (3.6)		29.2 (28.8)	184
Me ₃ AsBr ₂	White	13.0 (12.8)	3.4 (3.2)	57.7 (57.1)		289
$(p-\tilde{F}C_6H_4)_3AsI_4$	Brown	25.3 (25.4)	1.4 (1.4)	59.4 (59.8)		70, 113, 150 ^b
Ph ₃ AsI ₄	Brown	28.3 (28.1)	2.0 (1.9)	65.5 (66.0)		65, 104, 145 ^b
Ph ₃ AsI ₂	Yellow	39.6 (39.6)	2.7 (2.7)	45.0 (45.4)		122
$(p-MeOC_6H_4)_3AsI_2$	Orange	45.0 (45.3)	3.7 (3.6)	29.2 (28.8)		156
Me ₃ AsI ₂	Cream	9.7 (9.6)	2.4 (2.4)	67.4 (67.9)		185
Ph ₃ AsIBr	Yellow	42.1 (41.9)	2.9 (3.2)	15.4 (15.6)	24.3 (24.6)	143

^{*a*} Calculated values in parentheses. ^{*b*} Raman bands resulting from I_3^- ion, not v(As-X).

given previously for the last compound meant a reinvestigation was worthwhile.

We also investigated the effect on the stability of R_3AsI_2 ($R = p-FC_6H_4$, Ph or *p*-MeOC₆H₄) compounds with respect to R_3AsI_4 and R_3As in diethyl ether upon variation of the R groups in the present study.

Results and Discussion

The compounds R_3AsX_2 ($R = Me \text{ or } p\text{-MeOC}_6H_4$), X = Br or I were simply prepared by the direct reaction of the tertiary arsine with the dihalogen in diethyl ether under anhydrous and anaerobic conditions, equation (1). Synthesis of Ph₃AsIBr was

$$R_{3}As + X_{2} \xrightarrow{N_{2}, ca. 4d} R_{3}AsX_{2}$$
(1)

similarly achieved by direct reaction of Ph_3As with IBr in diethyl ether. The compound Ph_3AsI_2 cannot be synthesised by the above method, the reaction yielding equimolar quantities of Ph_3AsI_4 and Ph_3As . Consequently synthesis was carried out according to the published¹² method (see Experimental section). The instability of Ph_3AsI_2 in diethyl ether has been studied using electronic spectroscopy ^{17,18} and will be discussed later. Both (p-FC₆H₄)₃AsI₄ and Ph_3AsI_4 were synthesised by the direct reaction of the tertiary arsine with 2 mol equivalents of dijodine in diethyl ether.

All the triorganoarsenic di- and tetra-halides synthesised in this study are listed in Table 1, together with analytical data and the v(As-X) (X = Br or I) frequency in the Raman spectra. The v(As-X) band for both the bromide and iodide compounds shifts to higher wavenumbers with increasing basicity of the tertiary arsine, as expected. This phenomenon was also observed for analogous phosphorus compounds, R_3PX_2 .²² Of the compounds described herein, only Ph_3AsI_2 .²⁴ and Me_3AsBr_2 .²⁵ have previously been the subject of Raman spectroscopic study; the bands previously recorded for v(As-X) are in excellent agreement with ours. The compound Ph_3AsBr_2 was investigated using Raman spectroscopy ⁶ but no v(As-Br) bands were reported because of experimental limitations. A previous Raman spectroscopic study ¹³ on Et_3AsBr_2 exhibited a v(As-Br) band at 290 cm⁻¹ a value not inconsistent with that reported for Me_3AsBr_2 here, Table 1.

In order to gain further insight into the solid-state structures of compounds of stoichiometry Ph_3AsX_2 ($X_2 = Br_2$ or IBr) we grew crystals from diethyl ether solution at 0 °C. The compound Ph_3AsI_2 adopts the novel molecular 'spoke' structure, $Ph_3As-I-I$, 14,15 similar to Ph_3PX_2 ($X = Br_2$, I_2 or IBr). $^{19-21}$ We were thus intrigued to know if Ph_3AsX_2 ($X_2 =$ Br or IBr) also adopted this structure and, in the case of Ph_3AsIBr , which halogen would be bound to the arsenic atom. Additionally, previous studies 22 have shown that Ph_3PIBr is a

Fig. 1 Crystal structure of Ph₃AsBr₂

complicated molecule containing dual occupancy of the halogen sites, and we were interested to know if Ph_3AsIBr also exhibited this phenomenon.

The crystal structure of Ph_3AsBr_2 is illustrated in Fig. 1; bond lengths and angles and fractional atomic coordinates are listed in Tables 2 and 3, respectively. The structure shows Ph_3AsBr_2 to be a simple trigonal-bipyramidal molecule. This is in agreement with previous spectroscopic studies⁵⁻¹⁰ but in direct contrast to the analogous diiodine compound, Ph_3AsI_2 . Clearly, the nature of the halogen in R_3AsX_2 compounds is critical in determining the geometry of the compound formed.

The arsenic compounds represent a transition between the two structural types found previously for P and Sb, Ph_3AsBr_2 being trigonal bipyramidal and Ph_3AsI_2 having the molecular four-co-ordinate 'spoke' structure. Additionally, an approximate structural characterisation of Me_3AsBr_2 has been reported ² and tetrahedral geometry was found for the arsenic atom. Thus, the geometry of R_3AsX_2 compounds is dependent not only on the X atom but also the nature of the R group.

We thus reinvestigated the crystal structure of Me_3AsBr_2 and also determined that of Me_3AsI_2 . The structure of Me_3AsBr_2 is shown in Fig. 2, and selected bond lengths and angles and fractional atomic coordinates are listed in Tables 4 and 5, respectively. In agreement with a previous study by Hursthouse and Steer,² the arsenic atom adopts tetrahedral geometry; however, unlike their structure determination, the present structure has no disorder and much reduced final residuals. More importantly, this result confirms Me_3AsBr_2 as a further

Table 2 Selected bon	d lengths (Å) and angles (°) for Ph ₃ AsBr ₂
----------------------	--------------	-----------------	---

Br(1)-As Br(2)-As As-C(1)	2.552(5) 2.441(5) 1.88(2)	As-C(7) As-C(13)	1.94(2) 1.92(2)
Br(1)-As- $Br(2)$	119.1(2)	Br(2)-As- $C(1)$	89.2(8)
Br(1)-As- $C(1)$	90.5(8)	Br(2)-As-C(7)	89.0(6)
Br(1)-As- $C(7)$	90.4(6)	Br(2)-As-C(13)	88.9(8)
Br(1)-As-C(13)	92.0(8)		

Table 3 Fractional atomic coordinates for the non-hydrogen atoms in Ph₃AsBr₂

Atom	x	у	z
Br(1)	0.4949(3)	0.4368(2)	0.1732(2)
Br(2)	0.5343(2)	0.5674(2)	0.6205(2)
As	0.5133(2)	0.5031(3)	0.3966(3)
C(1)	0.646(2)	0.566(2)	0.355(2)
C(2)	0.746(2)	0.537(2)	0.408(2)
C(3)	0.842(2)	0.591(2)	0.377(2)
C(4)	0.832(3)	0.669(2)	0.291(3)
C(5)	0.736(3)	0.699(2)	0.230(3)
C(6)	0.644(3)	0.645(3)	0.266(3)
C(7)	0.516(2)	0.366(2)	0.460(2)
C(8)	0.435(2)	0.333(2)	0.542(3)
C(9)	0.440(3)	0.232(3)	0.578(3)
C(10)	0.514(2)	0.169(2)	0.533(2)
C(11)	0.594(2)	0.200(2)	0.455(3)
C(12)	0.597(2)	0.302(2)	0.415(3)
C(13)	0.377(2)	0.573(2)	0.386(2)
C(14)	0.365(2)	0.675(2)	0.407(3)
C(15)	0.265(3)	0.723(2)	0.401(3)
C(16)	0.177(2)	0.666(2)	0.368(3)
C(17)	0.184(2)	0.566(3)	0.338(3)
C(18)	0.285(2)	0.518(2)	0.248(2)

Fig. 2 Crystal structure of Me₃AsBr₂

example of the molecular four-co-ordinate 'spoke' structure, in direct contrast to the trigonal-bipyramidal Ph_3AsBr_2 , and further illustrates the geometrical dependence on R as well as X for compounds of stoichiometry R_3AsX_2 .

The crystal structure of Me_3AsI_2 is illustrated in Fig. 3, and selected bond lengths and angles and fractional atomic coordinates are listed in Tables 6 and 7, respectively. As expected, and in accord with the structure of Ph_3AsI_2 ,^{14,15}

Table 4 Selected bond lengths (Å) and angles (°) for Me₃AsBr₂

Br(1)–Br(2) Br(1)–As	3.363(4) 2.275(4)	As-C(1)	1.89(1)
Br(1)-As-C(1)	105.3(4)	C(1)-As(1)-C(2)	113.3(3)

Table 5 Fractional atomic co-ordinates for the non-hydrogen atoms in Me_3AsBr_2

Atom	x	у	5
Br(1)	0.67	0.33	0.4710(3)
Br(2)	0.67	0.33	0.8323(3)
As	0.67	0.33	0.2266(3)
C(1)	0.369(2)	0.1843(2)	0.173(1)

Fig. 3 Crystal structure of Me₃AsI₂

 Me_3AsI_2 is also an example of the four-co-ordinate molecular structure, Me_3AsI_{-1} . The I–I bond in Me_3AsI_2 , 3.39 Å, is considerably lengthened with respect to molecular iodine $(2.67 \text{ Å})^4$ and Ph_3AsI_2 (3.05 Å),¹⁵ but is still within bonding distance when compared to the van der Waals radius of diiodine (4.3 Å).⁴ Also, as expected, increased lengthening of the I–I bond occurs upon increasing basicity of the tertiary arsine. We have previously observed this phenomenon with analogous phosphorus compounds, *e.g.* Ph_3PI_2 [*d*(I–I) 3.14 Å]¹⁹ and $PhMe_2PI_2$ (3.41 Å).²⁶

The crystal structure of Ph₃AsIBr has been described elsewhere.²⁷ No compound of this stoichiometry had previously been isolated in the solid state. The molecule exists as a molecular four-co-ordinate structure analogous to Ph₃AsI₂ and Ph_3PX_2 (X₂ = Br₂, I₂ or IBr) and contrasts with trigonalbipyramidal Ph₃AsBr₂. One surprising difference between Ph₃AsIBr and Ph₃PIBr, prepared in an identical way by us from diethyl ether, is in the nature of the bonded halogen sites. In Ph₃PIBr there is dual occupancy of the sites, *i.e.* although the molecule exists predominantly as Ph₃P-I-Br, evidence of the species Ph_3PI_2 , Ph_3PBr_2 and Ph_3PBrI was also observed within the unit cell.²² In contrast, Ph_3AsIBr exists as 100% Ph_3AsIBr with no dual occupancy of the halogen sites. We have also recorded the X-ray powder-diffraction patterns of the compounds Ph_3AsX_2 (X₂ = Br₂, I₂ or IBr) for comparative purposes, Fig. 4. The patterns of these bulk samples clearly establish Ph₃AsIBr as a unique species and not simply a statistical mixture of Ph₃AsBr₂ and Ph₃AsI₂.

Table 6 Selected bond lengths (Å) and angles (°) for Me₃AsI₂

l(1)–l(2)	3.3912(7)	I(2)–As	2.272(6)
l(1)–As	3.695(6)	As–C(1)	1.83(3)
I(2)–I(1)–As I(1)–As–I(2) I(1)–As–C(1)	180.00 180.00 76.9(6)	I(2)–As–C(1) C(1)–As–C(2)	103.1(6) 115.0(4)

Table 7 Fractional atomic coordinates for the non-hydrogen atoms in Me_3Asl_2

Atom	X	У	2
I(1)	0.33	-0.33	0.2210(6)
I(2)	0.33	-0.33	0.5834(5)
As	0.33	-0.33	0.8261(6)
C(1)	0.189(2)	-0.1892(2)	0.870(2)

Fig. 4 Comparison of the X-ray powder-diffraction patterns of Ph_3AsX_2 ($X_2 = Br_2$, I_2 or IBr)

An Overview.-At this point we wish to attempt some explanation of the structures adopted. A summary of all the crystallographically determined structures of R₃EX₂ compounds (E = P, As or Sb; $X_2 = F_2$, Cl₂, Br₂ or IBr) is presented in Table 8. Clearly, these results indicate that for R₃AsX₂ compounds, the structure adopted, *i.e.* tetrahedral or trigonal bipyramidal, depends on both R and X; Me₃AsBr₂ containing the arsenic in tetrahedral geometry, Me₃As-Br-Br and Ph₃AsBr₂ containing the arsenic in trigonal-bipyramidal geometry. Additionally, Ph₃AsI₂ is also tetrahedral, Ph₃As-I-I.^{14,15} Steric factors are unimportant, since the arsenic atom can accommodate three bulky triphenylarsine groups in trigonal-bipyramidal geometry but prefers tetrahedral geometry even with the much less sterically demanding trimethylarsine groups. If we extend this argument further, our recent discoveries have shown from X-ray crystallographic data that $Ph_3PX_2 (X_2 = Br_2)^{19} I_2^{20} \text{ or } IBr^{22}$ and $PhMe_2PI_2^{26}$ are all molecular four-co-ordinate with the phosphorus in tetrahedral geometry. The trimethylstibine compounds Me_3SbX_2 (X = F, Cl, Br or I)³³ and Ph₃SbI₂²³ have a trigonal-bipyramidal structure. Additionally, other workers have shown from X-ray crystallographically that $Ph_3PF_2^{28}$ is trigonal bipyramidal, as are $(Me_3CCH_2)_3AsBr_2^3$ and $Ph_3AsF_2^{.1}$ On the other hand, Me₃NI₂ is a further example of the molecular four-co-ordinate structure, Me₃N-I-I, containing tetrahedral nitrogen.³³ The initial interaction of R_3E (E = N, P, As or Sb) with X_2 (X₂ = F_2 , Cl_2 , Br_2 , I_2 or IBr) depends on the basicity of the R_3E species. The more acidic is the E atom in R_3EX_2 , the more likely is the trigonal-bypyramidal structure, *i.e.* N < P < As < Sband I < Br < Cl < F.

Table 8Crystallographicallydeterminedstructuresof R_3EX_2 compounds (E = P, As or Sb; $X_2 = Br_2$, I_2 or IBr)

Compound	Structure ^a	Ref.
$R_{2}PF_{2}$ (R = Ph or $C_{4}F_{5}$)	ТВРҮ	28
R ₃ PCl ₂	$b^{}$	
$R_{3}^{P}Br_{2}(R = Ph \text{ or } p-FC_{6}H_{4})$	c.t.	20,26,29
R_3PI_2 ($R_3 = Ph_3$, $PhMe_2$ or Bu'_3)	c.t.	19,26,30
PhyPIBr	c.t.	22
Ph ₃ AsF ₂	TBPY	1
R ₃ AsCl ₂	с	
$R_{3}AsBr_{2}(R = Ph \text{ or } Me_{3}CCH_{2})$	TBPY	This work, 3
Me ₃ AsBr ₂	c.t.	This work
$R_3 Asl_2$ ($\tilde{R} = Ph$ or Me)	c.t.	This work, 14,15
Ph ₃ AsIBr	c.t.	27
R_3SbX_2 (R = Ph or	TBPY	23,31,32
Me; $\bar{\mathbf{X}} = \mathrm{Cl}$, Br or I)		

^{*a*} TBPY = Trigonal bipyramidal; c.t. = charge-transfer molecular 'spoke' structure. ^{*b*} No single-crystal X-ray data available. ^{*c*} Several crystallographic modifications of this structure are known.

Fig. 5 Packing of Me_3AsBr_2 molecules in the unit cell illustrating the interaction between the independent molecules

In intermediate cases, such as R_3AsBr_2 , a polarising environment is able to discourage the formation of a trigonalbipyramidal product. In the case of Ph_3AsBr_2 , the bulky phenyl groups inhibit coulombic interactions between the centres of positive and negative charge; however, if we examine the crystal packing of Me_3AsBr_2 , Fig. 5, it can be seen that the small methyl groups of the Me_3As ligand allow several $As-Br\cdots$ $BrMe_3As$ interactions in the solid state, whereas this is not possible with the bulky phenyl groups of Ph_3As . In all compounds of general formula R_3EX_2 a competing reaction takes place depending on the acidity of the E atom or the nature of the X atom in R_3EX . If the E atom has the greater acidity a

Scheme 2

trigonal-bipyramidal species is formed, if the X atom has greater acidity a charge-transfer molecular species R_3E-X-X is formed, Scheme 2. This hypothesis also explains why the structures of R_3EX_2 compounds are acutely solvent dependent, since the polarising power of the solvent will clearly affect the product formed.

Solution Stabilities of (p-MeOC₆H₄)₃AsI₂, Ph₃AsI₂ and (p- FC_6H_4)₃AsI₂. The Preparation of R₃AsI₂ (R = p-MeOC₆H₄) or Ph) and Attempted Preparation of (p-FC6H4)3PI2.-Klaboe and co-workers ¹⁶ studied the stability of Ph₃AsI₂ in CCl₄, and calculated the formation constant of Ph_3AsI_2 at 20 °C as K =1400 dm³ mol⁻¹. During our studies into the synthesis of R_3AsI_2 compounds we, in agreement with previous workers,¹⁶⁻¹⁸ found that Ph_3AsI_2 could not be prepared from diethyl ether solution and instead employed the method described by Beveridge and Harris¹² which uses light petroleum (b.p. 100–120 °C) as solvent. Both Me₃AsI₂ and (*p*- $MeOC_6H_4$)₃AsI₂ can easily be prepared from diethyl ether solution, but $(p-FC_6H_4)_3AsI_2$ could not be prepared at all by us, regardless of the solvent used. This prompted us to investigate the stability of (p-MeOC₆H₄)AsI₂ in CCl₄ solution, so that a direct comparison with the stability of Ph_3AsI_2 in the same solvent,¹⁶ could be made. Clearly, the substituted groups on the phenyl rings of R_3AsI_2 (R = aryl) compounds has an important bearing on the stability of the chargetransfer complex.

When a solution of $(p-\text{MeOC}_6\text{H}_4)_3\text{As}$ in CCl₄ was added to a solution of diiodine in CCl₄ a single UV absorption band with a maximum at 333 nm was observed, resulting from the formation of the $(p-\text{MeOC}_6\text{H}_4)_3\text{AsI-I}$ charge-transfer complex. Solutions with the same diiodine concentrations and varying $(p-\text{MeOC}_6\text{H}_4)_3\text{As}$ concentrations exhibited UV spectra which passed through an isosbestic point at 469 nm, Fig. 6, indicating the formation of only one complex. The stability constant, K, of the complex was calculated using the method of Rose and Drago.³⁴ In this method various values of the absorption coefficient ε_c were selected at random and the corresponding values of K^{-1} were calculated using equation (2) for each set of

$$K^{-1} = \frac{A}{\varepsilon_{\rm c}} - c_{\rm I} - c_{\rm D} + \frac{c_{\rm D}c_{\rm I}}{A}\varepsilon_{\rm c}$$
(2)

experimental data used in Fig. 6, A = absorbance at 333 nm, $c_1 =$ concentration of the diiodine solution in CCl₄ and $c_D =$ concentration of $(p-\text{MeOC}_6\text{H}_4)_3\text{As solution in CCl}_4$.

The values of K^{-1} for each set of experimental data are plotted against ε_c , in Fig. 7. Ideally all the curves should

Fig. 6 The UV absorption spectra of diiodine $(8.69 \times 10^{-5} \text{ mol dm}^{-3})$ and $(p-\text{MeOC}_6\text{H}_4)_3\text{As}$ in CCl₄ at 20 °C. Concentrations of $(p-\text{MeOC}_6\text{H}_4)_3\text{As}$ (10⁻⁴ mmol dm⁻³): 0 (1), 1.313 (2), 2.626 (3), 3.939 (4), 5.525 (5), 7.878 (6) and 13.13 (7)

Fig. 7 Plot of K^{-1} and ε_c calculated using equation (2) for the UV spectrum of diiodine and $(p-\text{MeOC}_6\text{H}_4)_3\text{As}$ in CCl₄ at 20 °C. Concentrations of $(p-\text{MeOC}_6\text{H}_4)_3\text{As}$ as in Fig. 6

intersect at one point, since there is only one K and one ε_c for the system. In practice, the points representing the intersection of any two curves tend to cluster in a relatively small area and their average values are used as the values of K and ε_c . The calculated values of K^{-1} and ε_c were plotted against each other using a computer package which gave a simple quadratic equation for each curve. These were solved to find the value of ε_c at every intersection. The mean of these values was taken to represent ε_c which was found to be approximately 23 600 dm³ mol⁻¹ cm⁻¹. From this the value of K^{-1} (and thus K) was calculated. At 20 °C, K was found to be 3500 dm³ mol⁻¹ ($\varepsilon_c =$ 23 600 dm³ mol⁻¹ cm⁻¹).

Comparing these results to those for Ph_3AsI_2 ,¹⁶ (*p*-MeOC₆H₄)₃AsI₂ is 2.5 times more stable than Ph_3AsI_2 . This result helps explain why (*p*-MeOC₆H₄)₃AsI₂ can be prepared in diethyl ether, a solvent in which it is impossible to prepare Ph_3AsI_2 . Additionally, since (*p*-FC₆H₄)₃AsI₂ cannot be prepared in any solvent we employed these results clearly illustrate the surprising dependence of the stability of R_3AsI_2 compounds on the nature of R. The stability of these

compounds is also clearly dependent on the nature of the solvent, since, when $(p-\text{MeOC}_6H_4)_3$ As is added to a solution of I_2 in MeCN, a pronounced darkening of the solution occurs and the UV spectrum developed two strong bands at 360 and 294 nm, assignable to the I_3^- ion, suggesting that reaction (3)

$$2(p-\text{MeOC}_{6}\text{H}_{4})_{3}\text{As-I-I} \longrightarrow [(p-\text{MeOC}_{6}\text{H}_{4})_{3}\text{AsI}]\text{I}_{3}$$

$$+$$

$$(p-\text{MeOC}_{6}\text{H}_{4})_{3}\text{As} \quad (3)$$

had occurred. Thus, $(p-\text{MeOC}_6\text{H}_4)_3\text{AsI}_2$ can be prepared in diethyl ether, in contrast to Ph₃AsI₂ which cannot; Ph₃AsI₂ can only be prepared in CCl₄ or light petroleum (b.p. 100–120 °C), and $(p-\text{FC}_6\text{H}_4)_3\text{AsI}_2$ cannot be prepared in any solvent used by us.

Conclusion

Unlike R_3PX_2 compounds, which are molecular four-coordinate $^{19-22}$ and R_3SbX_2 compounds which are all trigonal bipyramidal, 23,31,32,35 R_3AsX_2 may adopt either structure. Which structure is adopted is dependent both on R and X. Thus Ph₃AsI₂ is molecular four-co-ordinate, as is Me₃AsBr₂, but Ph₃AsBr₂ described herein and (Me₃CCH₂)₃AsBr₂ described previously by Pazic and George ³ are both trigonal bipyramidal. Both Ph₃AsI₂ and Me₃AsI₂ are molecular four-co-ordinate. The compound Ph₃AsIBr is also molecular four-co-ordinate but, unlike Ph₃PIBr, has halogen sites which show no evidence of mixing, *i.e.* no dual occupancy. As can be seen from Table 8, there are no X-ray crystallographically characterised R₃ECl₂ compounds; this is most surprising.

Solution studies on the compounds R_3AsI_2 ($R = p-FC_6H_4$, Ph or $p-MeOC_6H_4$) again illustrate the sensitivity of R_3AsX_2 compounds to the nature of R. The compound ($p-FC_6H_4$)₃AsI₂ cannot be prepared in any solvent, only ($p-FC_6H_4$)₃AsI₄ can be isolated, Ph_3AsI_2 cannot be prepared in Et₂O but may be formed under special conditions (see Experimental section) in light petroleum,¹² ($p-MeOC_6H_4$)₃AsI₂ is the quantitative product from the direct combination of the tertiary arsine and diiodine in Et₂O with no evidence for the formation of ($p-MeOC_6H_4$)₃AsI₄, and Me₃AsI₂ is the quantitative product from the reaction of Me₃As and I₂. Clearly the solution stability of the R₃As–I–I charge-transfer complex is increased with increased basicity of the parent tertiary arsine. Thus, in accord with previous studies both by us and other workers, $^{12,16-18}$ the results presented here clearly illustrate the critical structural dependence compounds of the type R₃EX₂ have on the nature of the solvent in which they are prepared.

Experimental

All of the compounds described are moisture sensitive, some intensely so; therefore strictly anaerobic and anhydrous conditions were employed for their synthesis. Any subsequent manipulations were carried out inside a Vacuum Atmosphere HE-493 glove-box (argon atmosphere, < 100 ppm dioxygen). Diethyl ether (BDH) was dried by standing over sodium wire for *ca.* 1 d and subsequently refluxed over CaH₂ in an inert atmosphere and distilled directly into the reaction vessel. Tertiary arsines were either synthesised by standard Grignard techniques or obtained from Aldrich (AsPh₃). The purity of all the tertiary arsines was confirmed by elemental analysis prior to use. Diiodine, dibromine and iodine monobromide were obtained commercially (Aldrich) and used as received. All glassware was heated to 200 °C for ≈ 1 d before being transferred, hot, to the glove-box.

All the R_3AsX_2 compounds were synthesised in a similar way except Ph₃AsI₂, which is described later. The synthesis of Ph₃AsBr₂ is typical. Triphenylarsine (3.00 g, 9.80 mmol) was dissolved in diethyl ether (ca. 100 cm^3) and subsequently dibromine (1.57 g, 0.50 cm³, 9.80 mmol) was added. After ca. 3 d the resultant white solid was isolated using standard Schlenk techniques and dried in vacuo. It was then transferred to predried argon-filled ampoules which were flame-sealed. The yields for all the R₃AsX₂ compounds were quantitative. The R_3AsI_4 compounds were synthesised by direct reaction of R_3As with 2 molar equivalents of diiodine; R_3AsI_4 (R = Ph or p- FC_6H_4) is the only product obtainable from the direct reaction in diethyl ether regardless of the stoichiometry of the reactants. The compound Ph₃AsI₂ was synthesised by dropwise addition of a saturated solution of diiodine in light petroleum (b.p. 100-120 °C) to a saturated solution of triphenylarsine in the same solvent, total reaction time ca. 5 h. The yield is again quantitative. It is essential to maintain a large excess of triphenylarsine during reaction to prevent the formation of any

Formula	Ph ₃ AsBr ₂	Me ₃ AsBr ₂	Me_3AsI_2
М	466.05	279.83	373.83
Crystal system	Orthorhombic	Hexagonal	Hexagonal
Space group	$P2_12_12_1$ (no. 19)	<i>P</i> 6 ₃ <i>mc</i> (no. 186)	P6 ₃ mc (no. 186)
a/Å	12.261(6)	7.076(3)	7.132(1)
b/Å	13.254(4)	.,	
c/Å	10.678(5)	9.307(7)	9.359(2)
$\dot{U}/\text{\AA}^3$	1735(2)	403.6(6)	412.2(1)
Ζ	4	2	2
$D_{\rm c}/{\rm g~cm^{-3}}$	1.784	2.303	3.011
F(000)	904	260	332
μ/cm^{-1}	65.06	139.06	114.27
Crystal size/mm	$0.2 \times 0.2 \times 0.1$	$0.3 \times 0.05 \times 0.05$	$0.3 \times 0.1 \times 0.1$
Total data measured (θ_{max})	1777	2081	189
No. of unique reflections		465	189
No. of observed reflections $[F_{0} > 5\sigma(F)]$	537	299	109
No. of parameters	100	16	12
Transmission factors	0.89-1.06	0.94-1.02	0.088 - 1.11
Minimum, maximum electron density/e Å ⁻³	0.47, -0.43	1.51, -1.17	
Maximum least-squares shift/error ratio	0.05	0.04	< 0.01
Weighting scheme parameter g in $w = 1[\sigma^2(F) + gF^2]$	0.03	0.02	0.01
Final R	0.042	0.042	0.044
Final R'	0.041	0.040	0.038

 Ph_3AsI_4 . Attempts to prepare $(p-FC_6H_4)_3AsI_2$ by this method failed, equimolar quantities of (p-FC₆H₄)₃As and (p- FC_6H_4)₃AsI₄ being formed.

Elemental analyses were performed by the analytical laboratory of this department and the results are presented in Table 1. Raman spectra were recorded by the University of Manchester Raman service using a Coherent Innova 90 5 W argon-ion laser and a SPEX 1403 double monochromator (focal length 0.85 m) fitted with a BGCS microscope sampling attachment. The radiation was detected using a Hamamatsu R928 photomultiplier tube which was cooled to -30 °C in a Products for Research Inc. TE 177 RF-005 cooler housing. The data were processed on a SPEX DM1B data station. Solution UV spectra were recorded on a Shimadzu UV-2101PC UV/VIS scanning spectrophotometer. X-Ray powder diffraction patterns were recorded on a Scintag 2000 XRD powder diffractometer ($\lambda = 1.5418$ Å).

X-Ray Crystallography.—All X-ray measurements were performed using graphite-monochromated Mo-Ka radiation; the structures were solved using direct methods.³⁶

A Siemens R3/v diffractometer was used for Me₃AsBr₂ and a Rigaku AFC6S for the other two compounds. Unit-cell dimensions were derived from the setting angles of 25 accurately centred reflections and the data collections performed by means of ω -2 θ scans. An absorption correction was applied in each case using the azimuthal scan technique. Details of the X-ray measurements and subsequent structure determinations are presented in Table 9. Hydrogen atoms were confined to chemically reasonable positions. Neutral atom scattering factors were taken from ref. 37(a). Anomalous dispersion effects were taken from ref. 37(b). All calculations were performed using the TEXSAN crystallographic software package.38

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We are grateful to the SERC for a studentship (to H. P. L.) and Johnson Matthey plc for a CASE studentship (to N. B.) and to the Department of Environment for financial support.

References

- 1 A. Augustine, G. Ferguson and F. C. March, Can. J. Chem., 1975, 53. 1647.
- 2 M. B. Hursthouse and I. A. Steer, J. Organomet. Chem., 1971, 27, C11.
- 3 J. C. Pazic and G. George, Organometallics, 1989, 8, 482.
- 4 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1990, ch. 17, p. 934.
- 5 E. Maslowsky, J. Organomet. Chem., 1974, 70, 153.
- 6 M. H. O'Brien, G. O. Doak and G. G. Long, Inorg. Chim. Acta, 1967. 1. 34.
- 7 K. M. Mackay, D. B. Sowerby and W. C. Young, Spectrochim. Acta, Part A, 1970, 26, 1581.

- 8 S. Elbel, H. Esgaard and L. Carlsen, J. Chem. Soc., Dalton Trans., 1987, 481
- 9 T. B. Brill and G. G. Long, Inorg. Chem., 1970, 9, 1980.
- 10 K. B. Dillon, R. J. Lynch and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1976, 1478.
- 11 K. A. Jensen, Z. Anorg. Allg. Chem., 1954, 277, 258. 12 A. D. Beveridge and G. S. Harris, J. Chem. Soc., 1964, 6076.
- 13 L. Verdonck and G. P. Van der Kelen, Spectrochim. Acta, Part A, 1977. 33, 601.
- 14 C. A. McAuliffe, B. Beagley, G. A. Gott, A. G. Mackie, P. P. MacRory and R. G. Pritchard, Angew. Chem., Int. Ed. Engl., 1987, 26, 264.
- 15 B. Beagley, C. B. Colburn, O. El-Sayrafi, G. A. Gott, D. G. Kelly, A. G. Mackie, C. A. McAuliffe and R. G. Pritchard, Acta Crystallogr., Sect. C., 1988, 44, 38.
- 16 E. Augdahl, J. Grundness and P. Klaboe, Inorg. Chem., 1965, 4, 1475
- 17 K. R. Bhaskar, S. N. Bhat, S. S. Singh and C. N. R. Rao, J. Inorg. Nucl. Chem., 1966, 28, 1915.
- 18 S. N. Bhat and C. N. R. Rao, J. Am. Chem. Soc., 1966, 88, 3216.
- 19 S. M. Godfrey, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163.
- 20 N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1992, 355.
- 21 N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993.101
- 22 N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1993, 2261.
- 23 N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1994, 1759.
- 24 F. W. Parrett, Spectrochim. Acta, Part A, 1969, 25, 1271.
- 25 A. Finch, P. N. Gates and A. S. Muir, J. Raman Spectrosc., 1988, 19, 91.
- 26 N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1995, 2421.
- 27 B. Beagley, S. M. Godfrey, N. Jaibon, C. A. McAuliffe and R. G. Pritchard, Acta Crystallogr., in the press.
- 28 F. Weller, D. Nuszhar, K. Dehnicke, F. Gingl and J. Strahle, Z. Anorg. Allg. Chem., 1991, 602, 7; K. M. Doxsee, E. M. Hanawalt and T. J. R. Weakley, Acta Crystallogr., Sect. C, 1992, 48, 1288. 29 N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe,
- R. G. Pritchard and J.-M. Moreno, unpublished work.
- 30 W. W. duMont, M. Batcher, S. Pohland and W. Saak, Angew. Chem., Int. Ed. Engl., 1987, 26, 912.
- 31 M. J. Begley and D. B. Sowerby, Acta Crystallogr., Sect. C, 1993, 49, 1044.
- 32 A. F. Wells, Z. Kristallogr., 1938, 99, 367.
- 33 K. O. Stromme, Acta Chem. Scand., 1959, 13, 268.
- 34 N. J. Rose and R. S. Drago, J. Am. Chem. Soc., 1959, 81, 6138.
- 35 M. J. Begley and D. B. Sowerby, Acta Crystallogr., Sect. C, 1993, 49, 1044.
- 36 G. M. Sheldrick, SHELXS 86, University of Göttingen, 1986.
- 37 International Tables for X-Ray Crystallography, Kynoch Press,
- Birmingham, 1974, vol. 4, (a) Table 2.2A; (b) Table 2.31. 38 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.

Received 1st May 1995; Paper 5/02770E